Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High Schmidt number concentration in quantum bound entangled states (2402.12966v1)

Published 20 Feb 2024 in quant-ph

Abstract: A deep understanding of quantum entanglement is vital for advancing quantum technologies. The strength of entanglement can be quantified by counting the degrees of freedom that are entangled, which results in a quantity called Schmidt number. A particular challenge is to identify the strength of entanglement in quantum states which remain positive under partial transpose (PPT), otherwise recognized as undistillable states. Finding PPT states with high Schmidt number has become a mathematical and computational challenge. In this work, we introduce efficient analytical tools for calculating the Schmidt number for a class of bipartite states, called generalized grid states. Our methods improve the best known bounds for PPT states with high Schmidt number. Most notably, we construct a Schmidt number three PPT state in five dimensional systems and a family of states with a Schmidt number of $(d+1)/2$ for odd $d$-dimensional systems, representing the best-known scaling of the Schmidt number in a local dimension. Additionally, these states possess intriguing geometrical properties, which we utilize to construct indecomposable entanglement witnesses.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (41)
  1. Leonid Gurvits, “Classical deterministic complexity of edmonds’ problem and quantum entanglement,” in Proceedings of the thirty-fifth annual ACM symposium on Theory of computing (2003) pp. 10–19.
  2. Sevag Gharibian, Yichen Huang, Zeph Landau, Seung Woo Shin, et al., “Quantum hamiltonian complexity,” Foundations and Trends® in Theoretical Computer Science 10, 159–282 (2015).
  3. P Aliferis, PS Bourdon, PO Boykin, C Branciard, J Bub, JM Cai, W Carlson, I Chattopadhyay, K Chen, L Chen, et al., “Authors index of qic vol. 7 (2007) ah,” representations 5, 401 (2007).
  4. Asher Peres, “Separability criterion for density matrices,” Physical Review Letters 77, 1413 (1996).
  5. Michał Horodecki, Paweł Horodecki,  and Ryszard Horodecki, “Separability of mixed states: necessary and sufficient conditions,” Physics Letters A 223, 1–8 (1996).
  6. Mehul Malik, Manuel Erhard, Marcus Huber, Mario Krenn, Robert Fickler,  and Anton Zeilinger, “Multi-photon entanglement in high dimensions,” Nature Photonics 10, 248–252 (2016).
  7. Marcus Huber and Marcin Pawłowski, “Weak randomness in device-independent quantum key distribution and the advantage of using high-dimensional entanglement,” Physical Review A 88, 032309 (2013).
  8. Mohammad Mirhosseini, Omar S Magaña-Loaiza, Malcolm N O’Sullivan, Brandon Rodenburg, Mehul Malik, Martin PJ Lavery, Miles J Padgett, Daniel J Gauthier,  and Robert W Boyd, “High-dimensional quantum cryptography with twisted light,” New Journal of Physics 17, 033033 (2015).
  9. Chuan Wang, Fu-Guo Deng, Yan-Song Li, Xiao-Shu Liu,  and Gui Lu Long, “Quantum secure direct communication with high-dimension quantum superdense coding,” Physical Review A 71, 044305 (2005).
  10. Benjamin P Lanyon, Marco Barbieri, Marcelo P Almeida, Thomas Jennewein, Timothy C Ralph, Kevin J Resch, Geoff J Pryde, Jeremy L O’brien, Alexei Gilchrist,  and Andrew G White, “Simplifying quantum logic using higher-dimensional hilbert spaces,” Nature Physics 5, 134–140 (2009).
  11. Barbara M Terhal and Paweł Horodecki, “Schmidt number for density matrices,” Physical Review A 61, 040301 (2000).
  12. Nikolai Wyderka, Giovanni Chesi, Hermann Kampermann, Chiara Macchiavello,  and Dagmar Bruß, “Construction of efficient schmidt-number witnesses for high-dimensional quantum states,” Physical Review A 107, 022431 (2023).
  13. Jessica Bavaresco, Natalia Herrera Valencia, Claude Klöckl, Matej Pivoluska, Paul Erker, Nicolai Friis, Mehul Malik,  and Marcus Huber, “Measurements in two bases are sufficient for certifying high-dimensional entanglement,” Nature Physics 14, 1032–1037 (2018).
  14. Dariusz Chruściński and Andrzej Kossakowski, “How to construct indecomposable entanglement witnesses,” Journal of Physics A: Mathematical and Theoretical 41, 145301 (2008).
  15. Paweł Horodecki, Michał Horodecki,  and Ryszard Horodecki, “Bound entanglement can be activated,” Physical review letters 82, 1056 (1999).
  16. Asher Peres, “All the bell inequalities,” Foundations of Physics 29, 589–614 (1999).
  17. Lin Chen, Yu Yang,  and Wai-Shing Tang, “Schmidt number of bipartite and multipartite states under local projections,” Quantum Information Processing 16, 1–27 (2017).
  18. Tobias Moroder, Oleg Gittsovich, Marcus Huber,  and Otfried Gühne, “Steering bound entangled states: a counterexample to the stronger peres conjecture,” Physical review letters 113, 050404 (2014).
  19. Tamás Vértesi and Nicolas Brunner, “Disproving the peres conjecture by showing bell nonlocality from bound entanglement,” Nature communications 5, 5297 (2014).
  20. Karol Horodecki, Michał Horodecki, Paweł Horodecki,  and Jonathan Oppenheim, “Secure key from bound entanglement,” Physical review letters 94, 160502 (2005).
  21. Marcus Huber, Ludovico Lami, Cécilia Lancien,  and Alexander Müller-Hermes, “High-dimensional entanglement in states with positive partial transposition,” Physical Review Letters 121, 200503 (2018).
  22. Károly F Pál and Tamás Vértesi, “Class of genuinely high-dimensionally-entangled states with a positive partial transpose,” Physical Review A 100, 012310 (2019).
  23. Yu Yang, Denny H Leung,  and Wai-Shing Tang, “All 2-positive linear maps from m3 (c) to m3 (c) are decomposable,” Linear Algebra and its Applications 503, 233–247 (2016).
  24. Daniel Cariello, “A gap for ppt entanglement,” Linear Algebra and its Applications 529, 89–114 (2017).
  25. Daniel Cariello, “Inequalities for the schmidt number of bipartite states,” Letters in Mathematical Physics 110, 827–833 (2020).
  26. Marcin Marciniak, Tomasz Młynik,  and Hiroyuki Osaka, “On a class of k𝑘kitalic_k-entanglement witnesses,” arXiv preprint arXiv:2104.14058  (2021).
  27. Joshua Lockhart, Otfried Gühne,  and Simone Severini, “Entanglement properties of quantum grid states,” Physical Review A 97, 062340 (2018).
  28. Biswash Ghimire, Thomas Wagner, Hermann Kampermann,  and Dagmar Bruß, “Quantum grid states and hybrid graphs,” Physical Review A 107, 042425 (2023).
  29. Károly F Pál, Géza Tóth, Erika Bene,  and Tamás Vértesi, “Bound entangled singlet-like states for quantum metrology,” Physical Review Research 3, 023101 (2021).
  30. Lucas Tendick, Hermann Kampermann,  and Dagmar Bruß, “Activation of nonlocality in bound entanglement,” Physical Review Letters 124, 050401 (2020).
  31. Otfried Gühne and Géza Tóth, “Entanglement detection,” Physics Reports 474, 1–75 (2009).
  32. Adam N Letchford and Michael M Sorensen, “Binary positive semidefinite matrices and associated integer polytopes,” Mathematical programming 131, 253–271 (2012).
  33. Toby Cubitt, Ashley Montanaro,  and Andreas Winter, “On the dimension of subspaces with bounded schmidt rank,” Journal of Mathematical Physics 49 (2008).
  34. Hao Chen, “Quantum entanglement and geometry of determinantal varieties,” Journal of mathematical physics 47, 052101 (2006).
  35. Pawel Horodecki, “Separability criterion and inseparable mixed states with positive partial transposition,” Physics Letters A 232, 333–339 (1997).
  36. Chen Ling, Jiawang Nie, Liqun Qi,  and Yinyu Ye, “Biquadratic optimization over unit spheres and semidefinite programming relaxations,” SIAM Journal on Optimization 20, 1286–1310 (2010).
  37. Satoshi Ishizaka, “Effect of bound entanglement on the convertibility of pure states,” in AIP Conference Proceedings, Vol. 734 (American Institute of Physics, 2004) pp. 261–264.
  38. Maciej Lewenstein, B Kraus, P Horodecki,  and JI Cirac, “Characterization of separable states and entanglement witnesses,” Physical Review A 63, 044304 (2001).
  39. Maciej Lewenstein, Barabara Kraus, J Ignacio Cirac,  and Pawel Horodecki, “Optimization of entanglement witnesses,” Physical Review A 62, 052310 (2000).
  40. Jan Sperling and Werner Vogel, “Representation of entanglement by negative quasiprobabilities,” Physical Review A 79, 042337 (2009).
  41. Brendan O’Donoghue, Eric Chu, Neal Parikh,  and Stephen Boyd, “SCS: Splitting conic solver, version 3.2.4,” https://github.com/cvxgrp/scs (2022).

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com