Papers
Topics
Authors
Recent
Search
2000 character limit reached

Beyond Hammersley's Last-Passage Percolation: a discussion on possible local and global constraints

Published 12 Feb 2018 in math.PR | (1802.04046v3)

Abstract: Hammersley's Last-Passage Percolation (LPP), also known as Ulam's problem, is a well-studied model that can be described as follows: consider $m$ points chosen uniformly and independently in $[0,1]2$, then what is the maximal number $\mathcal{L}_m$ of points that can be collected by an up-right path? We introduce here a generalization of this standard LPP, in order to allow for more general constraints than the up-right condition (a $1$-Lipschitz condition after rotation by $45{\circ}$). We focus more specifically on two cases: (i) when the constraint is a $\gamma$-H\"older (local) condition, we call it H-LPP; (ii) when the constraint is a path-entropy (global) condition, we call it E-LPP. These generalizations also allows us to deal with non-directed LPP. We develop motivations for directed and non-directed constrained LPP, and we give the correct order of $\mathcal{L}_m$ in a general manner.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.