Successive Convexification for 6-DoF Mars Rocket Powered Landing with Free-Final-Time (1802.03827v1)
Abstract: In this paper, we employ successive convexification to solve the minimum-time 6-DoF rocket powered landing problem. The contribution of this paper is the development and demonstration of a free-final-time problem formulation that can be solved iteratively using a successive convexification framework. This paper is an extension of our previous work on the 3-DoF free-final-time and the 6-DoF fixed-final-time minimum-fuel problems. Herein, the vehicle is modeled as a 6-DoF rigid-body controlled by a single gimbaled rocket engine. The trajectory is subject to a variety of convex and non-convex state- and control-constraints, and aerodynamic effects are assumed negligible. The objective of the problem is to determine the optimal thrust commands that will minimize the time-of-flight while satisfying the aforementioned constraints. Solving this problem quickly and reliably is challenging because (a) it is nonlinear and non-convex, (b) the validity of the solution is heavily dependent on the accuracy of the discretization scheme, and (c) it can be difficult to select a suitable reference trajectory to initialize an iterative solution process. To deal with these issues, our algorithm (a) uses successive convexification to eliminate non-convexities, (b) computes the discrete linear-time-variant system matrices to ensure that the converged solution perfectly satisfies the original nonlinear dynamics, and (c) can be initialized with a simple, dynamically inconsistent reference trajectory. Using the proposed convex formulation and successive convexification framework, we are able to convert the original non-convex problem into a sequence of convex second-order cone programming (SOCP) sub-problems. Through the use of Interior Point Method (IPM) solvers, this sequence can be solved quickly and reliably, thus enabling higher fidelity real-time guidance for rocket powered landings on Mars.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Collections
Sign up for free to add this paper to one or more collections.