Emergent Mind

Practical Transfer Learning for Bayesian Optimization

Published Feb 6, 2018 in stat.ML and cs.AI


When hyperparameter optimization of a machine learning algorithm is repeated for multiple datasets it is possible to transfer knowledge to an optimization run on a new dataset. We develop a new hyperparameter-free ensemble model for Bayesian optimization that is a generalization of two existing transfer learning extensions to Bayesian optimization and establish a worst-case bound compared to vanilla Bayesian optimization. Using a large collection of hyperparameter optimization benchmark problems, we demonstrate that our contributions substantially reduce optimization time compared to standard Gaussian process-based Bayesian optimization and improve over the current state-of-the-art for transfer hyperparameter optimization.

We're not able to analyze this paper right now due to high demand.

Please check back later (sorry!).

Generate a detailed summary of this paper with a premium account.

We ran into a problem analyzing this paper.

Please try again later (sorry!).

Get summaries of trending AI papers delivered straight to your inbox

Unsubscribe anytime.

Test Your Knowledge

You answered out of questions correctly.

Well done!