Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Bayesian Hyperparameter Optimization with BoTorch, GPyTorch and Ax (1912.05686v2)

Published 11 Dec 2019 in cs.LG and stat.ML

Abstract: Deep learning models are full of hyperparameters, which are set manually before the learning process can start. To find the best configuration for these hyperparameters in such a high dimensional space, with time-consuming and expensive model training / validation, is not a trivial challenge. Bayesian optimization is a powerful tool for the joint optimization of hyperparameters, efficiently trading off exploration and exploitation of the hyperparameter space. In this paper, we discuss Bayesian hyperparameter optimization, including hyperparameter optimization, Bayesian optimization, and Gaussian processes. We also review BoTorch, GPyTorch and Ax, the new open-source frameworks that we use for Bayesian optimization, Gaussian process inference and adaptive experimentation, respectively. For experimentation, we apply Bayesian hyperparameter optimization, for optimizing group weights, to weighted group pooling, which couples unsupervised tiered graph autoencoders learning and supervised graph prediction learning for molecular graphs. We find that Ax, BoTorch and GPyTorch together provide a simple-to-use but powerful framework for Bayesian hyperparameter optimization, using Ax's high-level API that constructs and runs a full optimization loop and returns the best hyperparameter configuration.

Citations (11)

Summary

We haven't generated a summary for this paper yet.