Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 115 tok/s Pro
Kimi K2 226 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Irredundant Triangular Decomposition (1802.01624v2)

Published 5 Feb 2018 in math.AG and math.AC

Abstract: Triangular decomposition is a classic, widely used and well-developed way to represent algebraic varieties with many applications. In particular, there exist sharp degree bounds for a single triangular set in terms of intrinsic data of the variety it represents, and powerful randomized algorithms for computing triangular decompositions using Hensel lifting in the zero-dimensional case and for irreducible varieties. However, in the general case, most of the algorithms computing triangular decompositions produce embedded components, which makes it impossible to directly apply the intrinsic degree bounds. This, in turn, is an obstacle for efficiently applying Hensel lifting due to the higher degrees of the output polynomials and the lower probability of success. In this paper, we give an algorithm to compute an irredundant triangular decomposition of an arbitrary algebraic set $W$ defined by a set of polynomials in C[x_1, x_2, ..., x_n]. Using this irredundant triangular decomposition, we were able to give intrinsic degree bounds for the polynomials appearing in the triangular sets and apply Hensel lifting techniques. Our decomposition algorithm is randomized, and we analyze the probability of success.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube