2000 character limit reached
E2E-MLT - an Unconstrained End-to-End Method for Multi-Language Scene Text (1801.09919v2)
Published 30 Jan 2018 in cs.CV
Abstract: An end-to-end trainable (fully differentiable) method for multi-language scene text localization and recognition is proposed. The approach is based on a single fully convolutional network (FCN) with shared layers for both tasks. E2E-MLT is the first published multi-language OCR for scene text. While trained in multi-language setup, E2E-MLT demonstrates competitive performance when compared to other methods trained for English scene text alone. The experiments show that obtaining accurate multi-language multi-script annotations is a challenging problem.
- Michal Bušta (3 papers)
- Yash Patel (41 papers)
- Jiri Matas (133 papers)