Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 43 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 455 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A Dynamic Process Interpretation of the Sparse ERGM Reference Model (1801.09911v1)

Published 30 Jan 2018 in math.ST, stat.ME, and stat.TH

Abstract: Exponential family random graph models (ERGMs) can be understood in terms of a set of structural biases that act on an underlying reference distribution. This distribution determines many aspects of the behavior and interpretation of the ERGM families incorporating it. One important innovation in this area has been the development of an ERGM reference model that produces realistic behavior when generalized to sparse networks of varying size. Here, we show that this model can be derived from a latent dynamic process in which tie formation takes place within small local settings between which individuals move. This derivation provides one possible micro-process interpretation of the sparse ERGM reference model, and sheds light on the conditions under which constant mean degree scaling can emerge.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)