Bi-scalar integrable CFT at any dimension (1801.09844v3)
Abstract: We propose a $D$-dimensional generalization of $4D$ bi-scalar conformal quantum field theory recently introduced by G\"{u}rdogan and one of the authors as a strong-twist double scaling limit of $\gamma$-deformed $\mathcal{N}=4$ SYM theory. Similarly to the $4D$ case, this D-dimensional CFT is also dominated by "fishnet" Feynman graphs and is integrable in the planar limit. The dynamics of these graphs is described by the integrable conformal $SO(D+1,1)$ spin chain. In $2D$ it is the analogue of L. Lipatov's $SL(2,\mathbb{C})$ spin chain for the Regge limit of $QCD$, but with the spins $s=1/4$ instead of $s=0$. Generalizing recent $4D$ results of Grabner, Gromov, Korchemsky and one of the authors to any $D$ we compute exactly, at any coupling, a four point correlation function, dominated by the simplest fishnet graphs of cylindric topology, and extract from it exact dimensions of R-charge 2 operators with any spin and some of their OPE structure constants.
Collections
Sign up for free to add this paper to one or more collections.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.