Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 47 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 12 tok/s Pro
GPT-4o 64 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 452 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Canonical diffusions on the pattern spaces of aperiodic Delone sets (1801.08956v5)

Published 26 Jan 2018 in math.DS, math-ph, math.MP, and math.PR

Abstract: We consider pattern spaces of aperiodic and repetitive Delone sets of finite local complexity. These spaces are compact metric spaces and constitute a special class of foliated spaces. We define new Sobolev spaces with respect to the unique invariant measure and prove the existence of the unitary Schr\"odinger semigroup, which in physics terms describe the evolution of phasons. We define and study natural leafwise diffusion processes on these pattern spaces. These processes have Feller, but lack strong Feller and hypercontractivity properties, and heat kernels do not exist. The associated Dirichlet forms are regular, strongly local, irreducible and recurrent, but not strictly local. For harmonic functions we prove new Liouville and Helmholtz-Hodge type theorems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube