Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
162 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-ergodic Complexity of Convex Proximal Inertial Gradient Descents (1801.07389v3)

Published 23 Jan 2018 in math.OC and stat.ML

Abstract: The proximal inertial gradient descent is efficient for the composite minimization and applicable for broad of machine learning problems. In this paper, we revisit the computational complexity of this algorithm and present other novel results, especially on the convergence rates of the objective function values. The non-ergodic O(1/k) rate is proved for proximal inertial gradient descent with constant stepzise when the objective function is coercive. When the objective function fails to promise coercivity, we prove the sublinear rate with diminishing inertial parameters. In the case that the objective function satisfies optimal strong convexity condition (which is much weaker than the strong convexity), the linear convergence is proved with much larger and general stepsize than previous literature. We also extend our results to the multi-block version and present the computational complexity. Both cyclic and stochastic index selection strategies are considered.

Summary

We haven't generated a summary for this paper yet.