Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Adaptive Accelerated Gradient Converging Methods under Holderian Error Bound Condition (1611.07609v2)

Published 23 Nov 2016 in math.OC and stat.ML

Abstract: Recent studies have shown that proximal gradient (PG) method and accelerated gradient method (APG) with restarting can enjoy a linear convergence under a weaker condition than strong convexity, namely a quadratic growth condition (QGC). However, the faster convergence of restarting APG method relies on the potentially unknown constant in QGC to appropriately restart APG, which restricts its applicability. We address this issue by developing a novel adaptive gradient converging methods, i.e., leveraging the magnitude of proximal gradient as a criterion for restart and termination. Our analysis extends to a much more general condition beyond the QGC, namely the H\"{o}lderian error bound (HEB) condition. {\it The key technique} for our development is a novel synthesis of {\it adaptive regularization and a conditional restarting scheme}, which extends previous work focusing on strongly convex problems to a much broader family of problems. Furthermore, we demonstrate that our results have important implication and applications in machine learning: (i) if the objective function is coercive and semi-algebraic, PG's convergence speed is essentially $o(\frac{1}{t})$, where $t$ is the total number of iterations; (ii) if the objective function consists of an $\ell_1$, $\ell_\infty$, $\ell_{1,\infty}$, or huber norm regularization and a convex smooth piecewise quadratic loss (e.g., squares loss, squared hinge loss and huber loss), the proposed algorithm is parameter-free and enjoys a {\it faster linear convergence} than PG without any other assumptions (e.g., restricted eigen-value condition). It is notable that our linear convergence results for the aforementioned problems are global instead of local. To the best of our knowledge, these improved results are the first shown in this work.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Mingrui Liu (44 papers)
  2. Tianbao Yang (163 papers)
Citations (15)

Summary

We haven't generated a summary for this paper yet.