Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Persistent Homology of Morse Decompositions in Combinatorial Dynamics (1801.06590v2)

Published 19 Jan 2018 in math.AT, cs.CG, and math.DS

Abstract: We investigate combinatorial dynamical systems on simplicial complexes considered as {\em finite topological spaces}. Such systems arise in a natural way from sampling dynamics and may be used to reconstruct some features of the dynamics directly from the sample. We study the homological persistence of {\em Morse decompositions} of such systems, an important descriptor of the dynamics, as a tool for validating the reconstruction. Our framework can be viewed as a step toward extending the classical persistence theory to "vector cloud" data. We present experimental results on two numerical examples.

Citations (22)

Summary

We haven't generated a summary for this paper yet.