Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Mutiscale Mapper: A Framework for Topological Summarization of Data and Maps (1504.03763v2)

Published 15 Apr 2015 in cs.CG and math.AT

Abstract: Summarizing topological information from datasets and maps defined on them is a central theme in topological data analysis. \textsf{Mapper}, a tool for such summarization, takes as input both a possibly high dimensional dataset and a map defined on the data, and produces a summary of the data by using a cover of the codomain of the map. This cover, via a pullback operation to the domain, produces a simplicial complex connecting the data points. The resulting view of the data through a cover of the codomain offers flexibility in analyzing the data. However, it offers only a view at a fixed scale at which the cover is constructed. Inspired by the concept, we explore a notion of a tower of covers which induces a tower of simplicial complexes connected by simplicial maps, which we call {\em multiscale mapper}. We study the resulting structure, its stability, and design practical algorithms to compute its associated persistence diagrams efficiently. Specifically, when the domain is a simplicial complex and the map is a real-valued piecewise-linear function, the algorithm can compute the exact persistence diagram only from the 1-skeleton of the input complex. For general maps, we present a combinatorial version of the algorithm that acts only on \emph{vertex sets} connected by the 1-skeleton graph, and this algorithm approximates the exact persistence diagram thanks to a stability result that we show to hold. We also relate the multiscale mapper with the \v{C}ech complexes arising from a natural pullback pseudometric defined on the input domain.

Citations (43)

Summary

We haven't generated a summary for this paper yet.