Scattering and blow-up criteria for 3D cubic focusing nonlinear inhomogeneous NLS with a potential (1801.05165v3)
Abstract: In this paper, we consider the 3d cubic focusing inhomogeneous nonlinear Schr\"{o}dinger equation with a potential $$ iu_{t}+\Delta u-Vu+|x|{-b}|u|{2}u=0,\;\;(t,x) \in {{\bf{R}}\times{\bf{R}}{3}}, $$ where $0<b\<1$. We first establish global well-posedness and scattering for the radial initial data $u_{0}$ in $H^{1}({\bf R}^{3})$ satisfying $M(u_{0})^{1-s_{c}}E(u_{0})^{s_{c}}<\mathcal{E}$ and $\|u_{0}\|_{L^{2}}^{2(1-s_{c})}\|H^{\frac{1}{2}}u_{0}\|_{L^{2}}^{2s_{c}}<\mathcal{K}$ provided that $V$ is repulsive, where $\mathcal{E}$ and $\mathcal{K}$ are the mass-energy and mass-kinetic of the ground states, respectively. Our result extends the results of Hong \cite{H} and Farah-Guzm$\acute{\rm a}$n \cite{FG1} with $b\in(0,\frac12)$ to the case $0<b\<1$. We then obtain a blow-up result for initial data $u_{0}$ in $H^{1}({\bf R}^{3})$ satisfying $M(u_{0})^{1-s_{c}}E(u_{0})^{s_{c}}<\mathcal{E}$ and $\|u_{0}\|_{L^{2}}^{2(1-s_{c})}\|H^{\frac{1}{2}}u_{0}\|_{L^{2}}^{2s_{c}}>\mathcal{K}$ if $V$ satisfies some additional assumptions.0}|{L{2}}{2(1-s{c})}|H{\frac{1}{2}}u_{0}|{L{2}}{2s{c}}>\mathcal{K}$ if $V$ satisfies some additional assumptions.