Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Genus zero Gopakumar-Vafa type invariants for Calabi-Yau 4-folds (1801.02513v1)

Published 8 Jan 2018 in math.AG, hep-th, math-ph, and math.MP

Abstract: In analogy with the Gopakumar-Vafa conjecture on CY 3-folds, Klemm and Pandharipande defined GV type invariants on Calabi-Yau 4-folds using Gromov-Witten theory and conjectured their integrality. In this paper, we propose a sheaf-theoretic interpretation of their genus zero invariants using Donaldson-Thomas theory on CY 4-folds. More specifically, we conjecture genus zero GV type invariants are $\mathrm{DT_{4}}$ invariants for one-dimensional stable sheaves on CY 4-folds. Some examples are computed for both compact and non-compact CY 4-folds to support our conjectures. We also propose an equivariant version of the conjectures for local curves and verify them in certain cases.

Summary

We haven't generated a summary for this paper yet.