Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gopakumar-Vafa type invariants on Calabi-Yau 4-folds via descendent insertions (2003.00787v2)

Published 2 Mar 2020 in math.AG and hep-th

Abstract: The Gopakumar-Vafa type invariants on Calabi-Yau 4-folds (which are non-trivial only for genus zero and one) are defined by Klemm-Pandharipande from Gromov-Witten theory, and their integrality is conjectured. In a previous work of Cao-Maulik-Toda, $\mathrm{DT}_4$ invariants with primary insertions on moduli spaces of one dimensional stable sheaves are used to give a sheaf theoretical interpretation of the genus zero GV type invariants. In this paper, we propose a sheaf theoretical interpretation of the genus one GV type invariants using descendent insertions on the above moduli spaces. The conjectural formula in particular implies nontrivial constraints on genus zero GV type (equivalently GW) invariants of CY 4-folds which can be proved by the WDVV equation.

Summary

We haven't generated a summary for this paper yet.