Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Utility-Privacy Trade-off with Total Variation Distance as a Privacy Measure (1801.02505v3)

Published 5 Jan 2018 in cs.IT and math.IT

Abstract: The total variation distance is proposed as a privacy measure in an information disclosure scenario when the goal is to reveal some information about available data in return of utility, while retaining the privacy of certain sensitive latent variables from the legitimate receiver. The total variation distance is introduced as a measure of privacy-leakage by showing that: i) it satisfies the post-processing and linkage inequalities, which makes it consistent with an intuitive notion of a privacy measure; ii) the optimal utility-privacy trade-off can be solved through a standard linear program when total variation distance is employed as the privacy measure; iii) it provides a bound on the privacy-leakage measured by mutual information, maximal leakage, or the improvement in an inference attack with a bounded cost function.

Citations (91)

Summary

We haven't generated a summary for this paper yet.