Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Generating Neural Networks with Neural Networks (1801.01952v4)

Published 6 Jan 2018 in stat.ML and cs.LG

Abstract: Hypernetworks are neural networks that generate weights for another neural network. We formulate the hypernetwork training objective as a compromise between accuracy and diversity, where the diversity takes into account trivial symmetry transformations of the target network. We explain how this simple formulation generalizes variational inference. We use multi-layered perceptrons to form the mapping from the low dimensional input random vector to the high dimensional weight space, and demonstrate how to reduce the number of parameters in this mapping by parameter sharing. We perform experiments and show that the generated weights are diverse and lie on a non-trivial manifold.

Citations (20)

Summary

We haven't generated a summary for this paper yet.