Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Multipliers in Bessel potential spaces. The case of different sign smooth indices (1801.01830v1)

Published 5 Jan 2018 in math.FA

Abstract: The objective of this paper is to describe the space of multipliers acting from a Bessel potential space $Hs_p(\mathbb Rn)$ into another space $H{-t}_q(\mathbb Rn)$, provided that the smooth indices of these spaces have different signs, i.e. $s, t \geqslant 0$. This space of multipliers consists of distributions $u$, such that for all $\varphi \in Hs_p(\mathbb Rn)$ the product $\varphi \cdot u$ is well-defined and belongs to the space $H{-t}_q(\mathbb Rn)$. We succeed to describe this space explicitly, provided that $p \leqslant q$ and one of the following conditions $$ s \geqslant t \geqslant 0, \ s > n/p \ \ \, \text{or} \ \ \, t \geqslant s \geqslant 0, \ t > n/q' \quad (: \text{where} \; 1/q +1/q' = 1), $$ holds. In this case one has $$ M[Hs_p(\mathbb{R}n) \to H{-t}_{q}(\mathbb{R}n)] = H{-t}_{q, : unif}(\mathbb{R}n) \cap H{-s}_{p', : unif}(\mathbb{R}n), $$ where $H\gamma_{r, : unif}(\mathbb{R}n), : \gamma \in \mathbb{R}, : r > 1$ is the scale of uniformly localized Bessel potential spaces. In particular but important case $s = t < n/\max (p,q')$ we prove two-sided continuous embeddings $$ H{-s}_{r_1, : unif}(\mathbb{R}n) \subset M[Hs_p(\mathbb{R}n) \to H{-s}_q(\mathbb{R}n)] \subset H{-s}_{r_2, : unif}(\mathbb{R}n), $$ where $r_2 = \max (p', q), \ r_1 =[s/n-(1/p -1/q)]{-1}$.

Summary

We haven't generated a summary for this paper yet.