Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sharp embeddings of uniformly localized Bessel potential spaces into multiplier spaces (1912.03745v1)

Published 8 Dec 2019 in math.FA

Abstract: For $p > 1, \gamma \in \mathbb{R}$, denote by $H{\gamma}_p(\mathbb{R}n)$ the Bessel potential space, by $H{\gamma}_{p, unif}(\mathbb{R}n)$ the corresponding uniformly localized Bessel potential space and by $M[s, -t]$ the space of multipliers from $Hs_2(\mathbb{R}n)$ into $H{-t}_2(\mathbb{R}n)$. Assume that $s, t \geqslant 0, n/2 > \max(s, t) > 0, r: = \min(s, t), p_1: = n/max(s, t)$. Then the following embeddings hold $$ H{-r}_{p_1, unif}(\mathbb{R}n) \subset M[s, -t] \subset H{-r}_{2, unif}(\mathbb{R}n). $$ The main result of the paper claims the sharpness of the left embedding in the following sense: it does not hold if the lower index $p_1$ is replaced by $p_1 -\varepsilon$ with any sufficiently small $\varepsilon > 0$.

Summary

We haven't generated a summary for this paper yet.