Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

f-Divergence constrained policy improvement (1801.00056v2)

Published 29 Dec 2017 in cs.LG, cs.AI, and stat.ML

Abstract: To ensure stability of learning, state-of-the-art generalized policy iteration algorithms augment the policy improvement step with a trust region constraint bounding the information loss. The size of the trust region is commonly determined by the Kullback-Leibler (KL) divergence, which not only captures the notion of distance well but also yields closed-form solutions. In this paper, we consider a more general class of f-divergences and derive the corresponding policy update rules. The generic solution is expressed through the derivative of the convex conjugate function to f and includes the KL solution as a special case. Within the class of f-divergences, we further focus on a one-parameter family of $\alpha$-divergences to study effects of the choice of divergence on policy improvement. Previously known as well as new policy updates emerge for different values of $\alpha$. We show that every type of policy update comes with a compatible policy evaluation resulting from the chosen f-divergence. Interestingly, the mean-squared BeLLMan error minimization is closely related to policy evaluation with the Pearson $\chi2$-divergence penalty, while the KL divergence results in the soft-max policy update and a log-sum-exp critic. We carry out asymptotic analysis of the solutions for different values of $\alpha$ and demonstrate the effects of using different divergence functions on a multi-armed bandit problem and on common standard reinforcement learning problems.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Boris Belousov (29 papers)
  2. Jan Peters (253 papers)
Citations (19)