Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 109 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Spectral parameter power series for arbitrary order linear differential equations (1712.06717v1)

Published 18 Dec 2017 in math.CA and math.NA

Abstract: Let $L$ be the $n$-th order linear differential operator $Ly = \phi_0y{(n)} + \phi_1y{(n-1)} + \cdots + \phi_ny$ with variable coefficients. A representation is given for $n$ linearly independent solutions of $Ly=\lambda r y$ as power series in $\lambda$, generalizing the SPPS (spectral parameter power series) solution which has been previously developed for $n=2$. The coefficient functions in these series are obtained by recursively iterating a simple integration process, begining with a solution system for $\lambda=0$. It is shown how to obtain such an initializing system working upwards from equations of lower order. The values of the successive derivatives of the power series solutions at the basepoint of integration are given, which provides a technique for numerical solution of $n$-th order initial value problems and spectral problems.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.