Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 43 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 35 tok/s Pro
GPT-4o 94 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 190 tok/s Pro
2000 character limit reached

Super-Resolution with Deep Adaptive Image Resampling (1712.06463v1)

Published 18 Dec 2017 in cs.CV

Abstract: Deep learning based methods have recently pushed the state-of-the-art on the problem of Single Image Super-Resolution (SISR). In this work, we revisit the more traditional interpolation-based methods, that were popular before, now with the help of deep learning. In particular, we propose to use a Convolutional Neural Network (CNN) to estimate spatially variant interpolation kernels and apply the estimated kernels adaptively to each position in the image. The whole model is trained in an end-to-end manner. We explore two ways to improve the results for the case of large upscaling factors, and propose a recursive extension of our basic model. This achieves results that are on par with state-of-the-art methods. We visualize the estimated adaptive interpolation kernels to gain more insight on the effectiveness of the proposed method. We also extend the method to the task of joint image filtering and again achieve state-of-the-art performance.

Citations (9)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.