Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 56 tok/s Pro
GPT-5 Medium 25 tok/s
GPT-5 High 22 tok/s Pro
GPT-4o 98 tok/s
GPT OSS 120B 452 tok/s Pro
Kimi K2 212 tok/s Pro
2000 character limit reached

Query-Based Abstractive Summarization Using Neural Networks (1712.06100v1)

Published 17 Dec 2017 in cs.CL

Abstract: In this paper, we present a model for generating summaries of text documents with respect to a query. This is known as query-based summarization. We adapt an existing dataset of news article summaries for the task and train a pointer-generator model using this dataset. The generated summaries are evaluated by measuring similarity to reference summaries. Our results show that a neural network summarization model, similar to existing neural network models for abstractive summarization, can be constructed to make use of queries to produce targeted summaries.

Citations (43)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.