Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 71 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 231 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4 33 tok/s Pro
2000 character limit reached

Lattice rules in non-periodic subspaces of Sobolev spaces (1712.02572v2)

Published 7 Dec 2017 in math.NA

Abstract: We investigate quasi-Monte Carlo (QMC) integration over the $s$-dimensional unit cube based on rank-1 lattice point sets in weighted non-periodic Sobolev spaces $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{sob}})$ and their subspaces of high order smoothness $\alpha>1$, where $\boldsymbol{\gamma}$ denotes a set of the weights. A paper by Dick, Nuyens and Pillichshammer has studied QMC integration in half-period cosine spaces with smoothness parameter $\alpha>1/2$ consisting of non-periodic smooth functions, denoted by $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{cos}})$, and also in the sum of half-period cosine spaces and Korobov spaces with common parameter $\alpha$, denoted by $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{kor}+\mathrm{cos}})$. Motivated by the results shown there, we first study embeddings and norm equivalences on those function spaces. In particular, for an integer $\alpha$, we provide their corresponding norm-equivalent subspaces of $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{sob}})$. This implies that $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{kor}+\mathrm{cos}})$ is strictly smaller than $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{sob}})$ as sets for $\alpha \geq 2$, which solves an open problem by Dick, Nuyens and Pillichshammer. Then we study the worst-case error of tent-transformed lattice rules in $\mathcal{H}(K_{2,\boldsymbol{\gamma},s}{\mathrm{sob}})$ and also the worst-case error of symmetrized lattice rules in an intermediate space between $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{kor}+\mathrm{cos}})$ and $\mathcal{H}(K_{\alpha,\boldsymbol{\gamma},s}{\mathrm{sob}})$. We show that the almost optimal rate of convergence can be achieved for both cases, while a weak dependence of the worst-case error bound on the dimension can be obtained for the former case.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.