Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Latent Super-Events to Detect Multiple Activities in Videos (1712.01938v2)

Published 5 Dec 2017 in cs.CV

Abstract: In this paper, we introduce the concept of learning latent super-events from activity videos, and present how it benefits activity detection in continuous videos. We define a super-event as a set of multiple events occurring together in videos with a particular temporal organization; it is the opposite concept of sub-events. Real-world videos contain multiple activities and are rarely segmented (e.g., surveillance videos), and learning latent super-events allows the model to capture how the events are temporally related in videos. We design temporal structure filters that enable the model to focus on particular sub-intervals of the videos, and use them together with a soft attention mechanism to learn representations of latent super-events. Super-event representations are combined with per-frame or per-segment CNNs to provide frame-level annotations. Our approach is designed to be fully differentiable, enabling end-to-end learning of latent super-event representations jointly with the activity detector using them. Our experiments with multiple public video datasets confirm that the proposed concept of latent super-event learning significantly benefits activity detection, advancing the state-of-the-arts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. AJ Piergiovanni (40 papers)
  2. Michael S. Ryoo (75 papers)
Citations (86)

Summary

We haven't generated a summary for this paper yet.