Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

One for All: Towards Language Independent Named Entity Linking (1712.01797v1)

Published 5 Dec 2017 in cs.CL

Abstract: Entity linking (EL) is the task of disambiguating mentions in text by associating them with entries in a predefined database of mentions (persons, organizations, etc). Most previous EL research has focused mainly on one language, English, with less attention being paid to other languages, such as Spanish or Chinese. In this paper, we introduce LIEL, a Language Independent Entity Linking system, which provides an EL framework which, once trained on one language, works remarkably well on a number of different languages without change. LIEL makes a joint global prediction over the entire document, employing a discriminative reranking framework with many domain and language-independent feature functions. Experiments on numerous benchmark datasets, show that the proposed system, once trained on one language, English, outperforms several state-of-the-art systems in English (by 4 points) and the trained model also works very well on Spanish (14 points better than a competitor system), demonstrating the viability of the approach.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Avirup Sil (45 papers)
  2. Radu Florian (54 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.