Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Boundedness of solution of a parabolic--ODE--parabolic chemotaxis--haptotaxis model with (generalized) logistic source (1711.10048v2)

Published 27 Nov 2017 in math.AP

Abstract: In this paper, we study the following chemotaxis--haptotaxis system with (generalized) logistic source $$ \left{\begin{array}{ll} u_t=\Delta u-\chi\nabla\cdot(u\nabla v)- \xi\nabla\cdot(u\nabla w)+u(a-\mu u{r-1}-w), \displaystyle{v_t=\Delta v- v +u},\quad \ \displaystyle{w_t=- vw},\quad\ \displaystyle{\frac{\partial u}{\partial \nu}=\frac{\partial v}{\partial \nu}=\frac{\partial w}{\partial \nu}=0},\quad x\in \partial\Omega, t>0,\ \displaystyle{u(x,0)=u_0(x)},v(x,0)=v_0(x),w(x,0)=w_0(x),\quad x\in \Omega, \end{array}\right.\eqno(0.1) $$ %under homogeneous Neumann boundary conditions in a smooth bounded domain $\mathbb{R}N(N\geq1)$, with parameter $r>1$. the parameters $a\in \mathbb{R}, \mu>0, \chi>0$. It is shown that when $r>2$, or \begin{equation*} \mu>\mu{*}=\begin{array}{ll} \frac{(N-2){+}}{N}(\chi+C{\beta}) C{\frac{1}{\frac{N}{2}+1}}_{\frac{N}{2}+1},~\mbox{if}r=2, \end{array} \end{equation*} % $\mu>\frac{(N-2){+}}{N}\chi C{\frac{1}{\frac{N}{2}+1}}{\frac{N}{2}+1}$, the considered problem possesses a global classical solution which is bounded, where $C{\frac{1}{\frac{N}{2}+1}}_{\frac{N}{2}+1}$ is a positive constant which is corresponding to the maximal sobolev regularity. Here $C_{\beta}$ is a positive constant which depends on $\xi$, $|u_0|{C(\bar{\Omega})},|v_0|{W{1,\infty}(\Omega)}$ and $|w_0|_{L\infty(\Omega)}$. This result improves or extends previous results of several authors.

Summary

We haven't generated a summary for this paper yet.