Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A new result for global existence and boundedness of solutions to a parabolic--parabolic Keller--Segel system with logistic source (1712.00906v1)

Published 4 Dec 2017 in math.AP

Abstract: We consider the following fully parabolic Keller--Segel system with logistic source $$ \left{\begin{array}{ll} u_t=\Delta u-\chi\nabla\cdot(u\nabla v)+ au-\mu u2,\quad x\in \Omega, t>0, \disp{v_t=\Delta v- v +u},\quad x\in \Omega, t>0, \end{array}\right.\eqno(KS) $$ over a bounded domain $\Omega\subset\mathbb{R}N(N\geq1)$, with smooth boundary $\partial\Omega$, the parameters $a\in \mathbb{R}, \mu>0, \chi>0$. It is proved that if $\mu>0$, then $(KS)$ admits a global weak solution, while if $\mu>\frac{(N-2){+}}{N}\chi C{\frac{1}{\frac{N}{2}+1}}{\frac{N}{2}+1}$, then $(KS)$ possesses a global classical solution which is bounded, where $C{\frac{1}{\frac{N} {2}+1}}{\frac{N}{2}+1}$ is a positive constant which is corresponding to the maximal Sobolev regularity. Apart from this, we also show that if $a = 0$ and $\mu>\frac{(N-2){+}}{N}\chi C{\frac{1}{\frac{N}{2}+1}}_{\frac{N}{2}+1}$, then both $u(\cdot, t)$ and $v(\cdot, t)$ decay to zero with respect to the norm in $L\infty(\Omega)$ as $t\rightarrow\infty$.

Summary

We haven't generated a summary for this paper yet.