Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 99 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 37 tok/s
GPT-5 High 38 tok/s Pro
GPT-4o 111 tok/s
GPT OSS 120B 470 tok/s Pro
Kimi K2 243 tok/s Pro
2000 character limit reached

Cascade Attribute Learning Network (1711.09142v1)

Published 24 Nov 2017 in cs.AI

Abstract: We propose the cascade attribute learning network (CALNet), which can learn attributes in a control task separately and assemble them together. Our contribution is twofold: first we propose attribute learning in reinforcement learning (RL). Attributes used to be modeled using constraint functions or terms in the objective function, making it hard to transfer. Attribute learning, on the other hand, models these task properties as modules in the policy network. We also propose using novel cascading compensative networks in the CALNet to learn and assemble attributes. Using the CALNet, one can zero shoot an unseen task by separately learning all its attributes, and assembling the attribute modules. We have validated the capacity of our model on a wide variety of control problems with attributes in time, position, velocity and acceleration phases.

Citations (4)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run paper prompts using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.