Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 44 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 13 tok/s Pro
GPT-5 High 15 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 208 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

A large covariance matrix estimator under intermediate spikiness regimes (1711.08950v4)

Published 24 Nov 2017 in stat.ME

Abstract: The present paper concerns large covariance matrix estimation via composite minimization under the assumption of low rank plus sparse structure. In this approach, the low rank plus sparse decomposition of the covariance matrix is recovered by least squares minimization under nuclear norm plus $l_1$ norm penalization. This paper proposes a new estimator of that family based on an additional least-squares re-optimization step aimed at un-shrinking the eigenvalues of the low rank component estimated at the first step. We prove that such un-shrinkage causes the final estimate to approach the target as closely as possible in Frobenius norm while recovering exactly the underlying low rank and sparsity pattern. Consistency is guaranteed when $n$ is at least $O(p{\frac{3}{2}\delta})$, provided that the maximum number of non-zeros per row in the sparse component is $O(p{\delta})$ with $\delta \leq \frac{1}{2}$. Consistent recovery is ensured if the latent eigenvalues scale to $p{\alpha}$, $\alpha \in[0,1]$, while rank consistency is ensured if $\delta \leq \alpha$. The resulting estimator is called UNALCE (UNshrunk ALgebraic Covariance Estimator) and is shown to outperform state of the art estimators, especially for what concerns fitting properties and sparsity pattern detection. The effectiveness of UNALCE is highlighted on a real example regarding ECB banking supervisory data.

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.