Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fine-Grained I/O Complexity via Reductions: New lower bounds, faster algorithms, and a time hierarchy (1711.07960v3)

Published 21 Nov 2017 in cs.DS and cs.CC

Abstract: This paper initiates the study of I/O algorithms (minimizing cache misses) from the perspective of fine-grained complexity (conditional polynomial lower bounds). Specifically, we aim to answer why sparse graph problems are so hard, and why the Longest Common Subsequence problem gets a savings of a factor of the size of cache times the length of a cache line, but no more. We take the reductions and techniques from complexity and fine-grained complexity and apply them to the I/O model to generate new (conditional) lower bounds as well as faster algorithms. We also prove the existence of a time hierarchy for the I/O model, which motivates the fine-grained reductions. Using fine-grained reductions, we give an algorithm for distinguishing 2 vs. 3 diameter and radius that runs in $O(|E|2/(MB))$ cache misses, which for sparse graphs improves over the previous $O(|V|2/B)$ running time. We give new reductions from radius and diameter to Wiener index and median. We show meaningful reductions between problems that have linear-time solutions in the RAM model. The reductions use low I/O complexity (typically $O(n/B)$), and thus help to finely capture the relationship between "I/O linear time" $\Theta(n/B)$ and RAM linear time $\Theta(n)$. We generate new I/O assumptions based on the difficulty of improving sparse graph problem running times in the I/O model. We create conjectures that the current best known algorithms for Single Source Shortest Paths (SSSP), diameter, and radius are optimal. From these I/O-model assumptions, we show that many of the known reductions in the word-RAM model can naturally extend to hold in the I/O model as well (e.g., a lower bound on the I/O complexity of Longest Common Subsequence that matches the best known running time). Finally, we prove an analog of the Time Hierarchy Theorem in the I/O model.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Erik D. Demaine (179 papers)
  2. Andrea Lincoln (13 papers)
  3. Quanquan C. Liu (28 papers)
  4. Jayson Lynch (61 papers)
  5. Virginia Vassilevska Williams (81 papers)
Citations (10)