Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

I/O Efficient Algorithms for Matrix Computations (1006.1307v1)

Published 7 Jun 2010 in cs.DS, cs.NA, and math.NA

Abstract: We analyse some QR decomposition algorithms, and show that the I/O complexity of the tile based algorithm is asymptotically the same as that of matrix multiplication. This algorithm, we show, performs the best when the tile size is chosen so that exactly one tile fits in the main memory. We propose a constant factor improvement, as well as a new recursive cache oblivious algorithm with the same asymptotic I/O complexity. We design Hessenberg, tridiagonal, and bidiagonal reductions that use banded intermediate forms, and perform only asymptotically optimal numbers of I/Os; these are the first I/O optimal algorithms for these problems. In particular, we show that known slab based algorithms for two sided reductions all have suboptimal asymptotic I/O performances, even though they have been reported to do better than the traditional algorithms on the basis of empirical evidence. We propose new tile based variants of multishift QR and QZ algorithms that under certain conditions on the number of shifts, have better seek and I/O complexities than all known variants. We show that techniques like rescheduling of computational steps, appropriate choosing of the blocking parameters and incorporating of more matrix-matrix operations, can be used to improve the I/O and seek complexities of matrix computations.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (9)

Summary

We haven't generated a summary for this paper yet.