Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A two-dimensional decomposition approach for matrix completion through gossip (1711.07684v2)

Published 21 Nov 2017 in cs.LG

Abstract: Factoring a matrix into two low rank matrices is at the heart of many problems. The problem of matrix completion especially uses it to decompose a sparse matrix into two non sparse, low rank matrices which can then be used to predict unknown entries of the original matrix. We present a scalable and decentralized approach in which instead of learning two factors for the original input matrix, we decompose the original matrix into a grid blocks, each of whose factors can be individually learned just by communicating (gossiping) with neighboring blocks. This eliminates any need for a central server. We show that our algorithm performs well on both synthetic and real datasets.

Summary

We haven't generated a summary for this paper yet.