Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
98 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
47 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Chinese Typeface Transformation with Hierarchical Adversarial Network (1711.06448v1)

Published 17 Nov 2017 in cs.CV

Abstract: In this paper, we explore automated typeface generation through image style transfer which has shown great promise in natural image generation. Existing style transfer methods for natural images generally assume that the source and target images share similar high-frequency features. However, this assumption is no longer true in typeface transformation. Inspired by the recent advancement in Generative Adversarial Networks (GANs), we propose a Hierarchical Adversarial Network (HAN) for typeface transformation. The proposed HAN consists of two sub-networks: a transfer network and a hierarchical adversarial discriminator. The transfer network maps characters from one typeface to another. A unique characteristic of typefaces is that the same radicals may have quite different appearances in different characters even under the same typeface. Hence, a stage-decoder is employed by the transfer network to leverage multiple feature layers, aiming to capture both the global and local features. The hierarchical adversarial discriminator implicitly measures data discrepancy between the generated domain and the target domain. To leverage the complementary discriminating capability of different feature layers, a hierarchical structure is proposed for the discriminator. We have experimentally demonstrated that HAN is an effective framework for typeface transfer and characters restoration.

Citations (10)

Summary

We haven't generated a summary for this paper yet.