Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Unified Framework for Generalizable Style Transfer: Style and Content Separation (1806.05173v1)

Published 13 Jun 2018 in cs.CV

Abstract: Image style transfer has drawn broad attention in recent years. However, most existing methods aim to explicitly model the transformation between different styles, and the learned model is thus not generalizable to new styles. We here propose a unified style transfer framework for both character typeface transfer and neural style transfer tasks leveraging style and content separation. A key merit of such framework is its generalizability to new styles and contents. The overall framework consists of style encoder, content encoder, mixer and decoder. The style encoder and content encoder are used to extract the style and content representations from the corresponding reference images. The mixer integrates the above two representations and feeds it into the decoder to generate images with the target style and content. During training, the encoder networks learn to extract styles and contents from limited size of style/content reference images. This learning framework allows simultaneous style transfer among multiple styles and can be deemed as a special `multi-task' learning scenario. The encoders are expected to capture the underlying features for different styles and contents which is generalizable to new styles and contents. Under this framework, we design two individual networks for character typeface transfer and neural style transfer, respectively. For character typeface transfer, to separate the style features and content features, we leverage the conditional dependence of styles and contents given an image. For neural style transfer, we leverage the statistical information of feature maps in certain layers to represent style. Extensive experimental results have demonstrated the effectiveness and robustness of the proposed methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Yexun Zhang (3 papers)
  2. Ya Zhang (222 papers)
  3. Wenbin Cai (2 papers)
Citations (34)

Summary

We haven't generated a summary for this paper yet.