Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 39 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 12 tok/s Pro
GPT-5 High 18 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 456 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

SparCE: Sparsity aware General Purpose Core Extensions to Accelerate Deep Neural Networks (1711.06315v2)

Published 7 Nov 2017 in cs.DC, cs.AR, and cs.CV

Abstract: Deep Neural Networks (DNNs) have emerged as the method of choice for solving a wide range of machine learning tasks. The enormous computational demands posed by DNNs have most commonly been addressed through the design of custom accelerators. However, these accelerators are prohibitive in many design scenarios (e.g., wearable devices and IoT sensors), due to stringent area/cost constraints. Accelerating DNNs on these low-power systems, comprising of mainly the general-purpose processor (GPP) cores, requires new approaches. We improve the performance of DNNs on GPPs by exploiting a key attribute of DNNs, i.e., sparsity. We propose Sparsity aware Core Extensions (SparCE)- a set of micro-architectural and ISA extensions that leverage sparsity and are minimally intrusive and low-overhead. We dynamically detect zero operands and skip a set of future instructions that use it. Our design ensures that the instructions to be skipped are prevented from even being fetched, as squashing instructions comes with a penalty. SparCE consists of 2 key micro-architectural enhancements- a Sparsity Register File (SpRF) that tracks zero registers and a Sparsity aware Skip Address (SASA) table that indicates instructions to be skipped. When an instruction is fetched, SparCE dynamically pre-identifies whether the following instruction(s) can be skipped and appropriately modifies the program counter, thereby skipping the redundant instructions and improving performance. We model SparCE using the gem5 architectural simulator, and evaluate our approach on 6 image-recognition DNNs in the context of both training and inference using the Caffe framework. On a scalar microprocessor, SparCE achieves 19%-31% reduction in application-level. We also evaluate SparCE on a 4-way SIMD ARMv8 processor using the OpenBLAS library, and demonstrate that SparCE achieves 8%-15% reduction in the application-level execution time.

Citations (30)

Summary

We haven't generated a summary for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.