Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Unsupervised Approach for Mapping between Vector Spaces (1711.05680v2)

Published 15 Nov 2017 in cs.CL

Abstract: We present a language independent, unsupervised approach for transforming word embeddings from source language to target language using a transformation matrix. Our model handles the problem of data scarcity which is faced by many languages in the world and yields improved word embeddings for words in the target language by relying on transformed embeddings of words of the source language. We initially evaluate our approach via word similarity tasks on a similar language pair - Hindi as source and Urdu as the target language, while we also evaluate our method on French and German as target languages and English as source language. Our approach improves the current state of the art results - by 13% for French and 19% for German. For Urdu, we saw an increment of 16% over our initial baseline score. We further explore the prospects of our approach by applying it on multiple models of the same language and transferring words between the two models, thus solving the problem of missing words in a model. We evaluate this on word similarity and word analogy tasks.

Citations (2)

Summary

We haven't generated a summary for this paper yet.