Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 56 tok/s
Gemini 2.5 Pro 39 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 16 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 155 tok/s Pro
GPT OSS 120B 476 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Adaptive estimation and noise detection for an ergodic diffusion with observation noises (1711.04462v2)

Published 13 Nov 2017 in math.ST, stat.ME, and stat.TH

Abstract: We research adaptive maximum likelihood-type estimation for an ergodic diffusion process where the observation is contaminated by noise. This methodology leads to the asymptotic independence of the estimators for the variance of observation noise, the diffusion parameter and the drift one of the latent diffusion process. Moreover, it can lessen the computational burden compared to simultaneous maximum likelihood-type estimation. In addition to adaptive estimation, we propose a test to see if noise exists or not, and analyse real data as the example such that data contains observation noise with statistical significance.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.