Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Channel Covariance Estimation for the Hybrid MIMO Architecture: A Compressive Sensing Based Approach (1711.04207v1)

Published 11 Nov 2017 in cs.IT and math.IT

Abstract: Spatial channel covariance information can replace full knowledge of the entire channel matrix for designing analog precoders in hybrid multiple-input-multiple-output (MIMO) architecture. Spatial channel covariance estimation, however, is challenging for the hybrid MIMO architecture because the estimator operating at baseband can only obtain a lower dimensional pre-combined signal through fewer radio frequency (RF) chains than antennas. In this paper, we propose two approaches for covariance estimation based on compressive sensing techniques. One is to apply a time-varying sensing matrix, and the other is to exploit the prior knowledge that the covariance matrix is Hermitian. We present the rationale of the two ideas and validate the superiority of the proposed methods by theoretical analysis and numerical simulations. We conclude the paper by extending the proposed algorithms from narrowband massive MIMO systems with a single receive antenna to wideband systems with multiple receive antennas.

Citations (56)

Summary

We haven't generated a summary for this paper yet.