Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Spatial Channel Covariance Estimation for Hybrid Architectures Based on Tensor Decompositions (1902.06297v1)

Published 17 Feb 2019 in eess.SP, cs.IT, and math.IT

Abstract: Spatial channel covariance information can replace full instantaneous channel state information for the analog precoder design in hybrid analog/digital architectures. Obtaining spatial channel covariance estimation, however, is challenging in the hybrid structure due to the use of fewer radio frequency (RF) chains than the number of antennas. In this paper, we propose a spatial channel covariance estimation method based on higher-order tensor decomposition for spatially sparse time-varying frequency-selective channels. The proposed method leverages the fact that the channel can be represented as a low-rank higher-order tensor. We also derive the Cram\'er-Rao lower bound on the estimation accuracy of the proposed method. Numerical results and theoretical analysis show that the proposed tensor-based approach achieves higher estimation accuracy in comparison with prior compressive-sensing-based approaches or conventional angle-of-arrival estimation approaches. Simulation results reveal that the proposed approach becomes more beneficial at low signal-to-noise (SNR) region.

Citations (19)

Summary

We haven't generated a summary for this paper yet.