Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enumeration of lozenge tilings of a hexagon with a shamrock missing on the symmetry axis (1711.02818v2)

Published 8 Nov 2017 in math.CO

Abstract: In their paper about a dual of MacMahon's classical theorem on plane partitions, Ciucu and Krattenthaler proved a closed form product formula for the tiling number of a hexagon with a "shamrock", a union of four adjacent triangles, removed in the center (Proc. Natl. Acad. Sci. USA 2013). Lai later presented a $q$-enumeration for lozenge tilings of a hexagon with a shamrock removed from the boundary (European J. Combin. 2017). It appears that the above are the only two positions of the shamrock hole that yield nice tiling enumerations. In this paper, we show that in the case of symmetric hexagons, we always have a simple product formula for the number of tilings when removing a shamrock at any position along the symmetry axis. Our result also generalizes Eisenk\"olbl's related work about lozenge tilings of a hexagon with two unit triangles missing on the symmetry axis (Electron. J. Combin. 1999).

Summary

We haven't generated a summary for this paper yet.