Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Another dual of MacMahon's theorem on plane partitions (1509.06421v1)

Published 21 Sep 2015 in math.CO

Abstract: In this paper we introduce a counterpart structure to the shamrocks studied in the paper "A dual of Macmahon's theorem on plane partitions" by M. Ciucu and C. Krattenthaler (Proc. Natl. Acad. Sci. USA, vol. 110 (2013), 4518-4523), which, just like the latter, can be included at the center of a lattice hexagon on the triangular lattice so that the region obtained from the hexagon by removing it has its number of lozenge tilings given by a simple product formula. The new structure, called a fern, consists of an arbitrary number of equilateral triangles of alternating orientations lined up along a lattice line. The shamrock and the fern seem to be the only structures with this property. It would be interesting to understand why these are the only two such structures.

Summary

We haven't generated a summary for this paper yet.