Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Reconstruction of groupoids and C*-rigidity of dynamical systems (1711.01052v2)

Published 3 Nov 2017 in math.OA and math.DS

Abstract: We show how to construct a graded locally compact Hausdorff \'etale groupoid from a C*-algebra carrying a coaction of a discrete group, together with a suitable abelian subalgebra. We call this groupoid the extended Weyl groupoid. When the coaction is trivial and the subalgebra is Cartan, our groupoid agrees with Renault's Weyl groupoid. We prove that if G is a second-countable locally compact \'etale groupoid carrying a grading of a discrete group, and if the interior of the trivially graded isotropy is abelian and torsion free, then the extended Weyl groupoid of its reduced C*-algebra is isomorphic as a graded groupoid to G. In particular, two such groupoids are isomorphic as graded groupoids if and only if there is an equivariant diagonal-preserving isomorphism of their reduced C*-algebras. We introduce graded equivalence of groupoids, and establish that two graded groupoids in which the trivially graded isotropy has torsion-free abelian interior are graded equivalent if and only if there is an equivariant diagonal-preserving Morita equivalence between their reduced C*-algebras. We use these results to establish rigidity results for a number of classes of dynamical systems, including all actions of the natural numbers by local homeomorphisms of locally compact Hausdorff spaces.

Summary

We haven't generated a summary for this paper yet.