Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
173 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Graded Steinberg algebras and partial actions (1708.05259v1)

Published 17 Aug 2017 in math.RA

Abstract: Given a graded ample Hausdorff groupoid, we realise its graded Steinberg algebra as a partial skew inverse semigroup ring. We use this to show that for a partial action of a discrete group on a locally compact Hausdorff topological space, the Steinberg algebra of the associated groupoid is graded isomorphic to the corresponding partial skew group ring. We show that there is a one-to-one correspondence between the open invariant subsets of the topological space and the graded ideals of the partial skew group ring. We also consider the algebraic version of the partial $C{*}$-algebra of an abelian group and realise it as a partial skew group ring via a partial action of the group on a topological space. Applications to the theory of Leavitt path algebras are given.

Summary

We haven't generated a summary for this paper yet.