Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Sparse-View X-Ray CT Reconstruction Using $\ell_1$ Prior with Learned Transform (1711.00905v3)

Published 2 Nov 2017 in stat.ML, cs.LG, and physics.med-ph

Abstract: A major challenge in X-ray computed tomography (CT) is reducing radiation dose while maintaining high quality of reconstructed images. To reduce the radiation dose, one can reduce the number of projection views (sparse-view CT); however, it becomes difficult to achieve high-quality image reconstruction as the number of projection views decreases. Researchers have applied the concept of learning sparse representations from (high-quality) CT image dataset to the sparse-view CT reconstruction. We propose a new statistical CT reconstruction model that combines penalized weighted-least squares (PWLS) and $\ell_1$ prior with learned sparsifying transform (PWLS-ST-$\ell_1$), and a corresponding efficient algorithm based on Alternating Direction Method of Multipliers (ADMM). To moderate the difficulty of tuning ADMM parameters, we propose a new ADMM parameter selection scheme based on approximated condition numbers. We interpret the proposed model by analyzing the minimum mean square error of its ($\ell_2$-norm relaxed) image update estimator. Our results with the extended cardiac-torso (XCAT) phantom data and clinical chest data show that, for sparse-view 2D fan-beam CT and 3D axial cone-beam CT, PWLS-ST-$\ell_1$ improves the quality of reconstructed images compared to the CT reconstruction methods using edge-preserving regularizer and $\ell_2$ prior with learned ST. These results also show that, for sparse-view 2D fan-beam CT, PWLS-ST-$\ell_1$ achieves comparable or better image quality and requires much shorter runtime than PWLS-DL using a learned overcomplete dictionary. Our results with clinical chest data show that, methods using the unsupervised learned prior generalize better than a state-of-the-art deep "denoising" neural network that does not use a physical imaging model.

Citations (19)

Summary

We haven't generated a summary for this paper yet.