Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MVMS-RCN: A Dual-Domain Unfolding CT Reconstruction with Multi-sparse-view and Multi-scale Refinement-correction (2405.17141v2)

Published 27 May 2024 in eess.IV and cs.CV

Abstract: X-ray Computed Tomography (CT) is one of the most important diagnostic imaging techniques in clinical applications. Sparse-view CT imaging reduces the number of projection views to a lower radiation dose and alleviates the potential risk of radiation exposure. Most existing deep learning (DL) and deep unfolding sparse-view CT reconstruction methods: 1) do not fully use the projection data; 2) do not always link their architecture designs to a mathematical theory; 3) do not flexibly deal with multi-sparse-view reconstruction assignments. This paper aims to use mathematical ideas and design optimal DL imaging algorithms for sparse-view tomography reconstructions. We propose a novel dual-domain deep unfolding unified framework that offers a great deal of flexibility for multi-sparse-view CT reconstruction with different sampling views through a single model. This framework combines the theoretical advantages of model-based methods with the superior reconstruction performance of DL-based methods, resulting in the expected generalizability of DL. We propose a refinement module that utilizes unfolding projection domain to refine full-sparse-view projection errors, as well as an image domain correction module that distills multi-scale geometric error corrections to reconstruct sparse-view CT. This provides us with a new way to explore the potential of projection information and a new perspective on designing network architectures. All parameters of our proposed framework are learnable end to end, and our method possesses the potential to be applied to plug-and-play reconstruction. Extensive experiments demonstrate that our framework is superior to other existing state-of-the-art methods. Our source codes are available at https://github.com/fanxiaohong/MVMS-RCN.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (61)
  1. X. Pan, E. Y. Sidky, and M. Vannier, “Why do commercial CT scanners still employ traditional, filtered back-projection for image reconstruction?” Inverse Problems, vol. 25, no. 12, p. 123009, Dec. 2009.
  2. S. Abbas, T. Lee, S. Shin, R. Lee, and S. Cho, “Effects of sparse sampling schemes on image quality in low-dose CT,” Medical Physics, vol. 40, no. 11, p. 111915, Oct. 2013.
  3. K. Kim, J. C. Ye, W. Worstell, J. Ouyang, Y. Rakvongthai, G. E. Fakhri, and Q. Li, “Sparse-view spectral CT reconstruction using spectral patch-based low-rank penalty,” IEEE Transactions on Medical Imaging, vol. 34, no. 3, pp. 748–760, Mar. 2015.
  4. A. K. Louis, “Incomplete data problems in x-ray computerized tomography,” Numerische Mathematik, vol. 48, no. 3, pp. 251–262, May 1986.
  5. S. J. LaRoque, E. Y. Sidky, and X. Pan, “Accurate image reconstruction from few-view and limited-angle data in diffraction tomography,” Journal of the Optical Society of America A, vol. 25, no. 7, p. 1772, Jun. 2008.
  6. J. Yang, H. Yu, M. Jiang, and G. Wang, “High-order total variation minimization for interior tomography,” Inverse Problems, vol. 26, no. 3, p. 035013, Feb. 2010.
  7. D. Zeng, J. Huang, H. Zhang, Z. Bian, S. Niu, Z. Zhang, Q. Feng, W. Chen, and J. Ma, “Spectral CT image restoration via an average image-induced nonlocal means filter,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 5, pp. 1044–1057, May 2016.
  8. M. Rantala, S. Vanska, S. Jarvenpaa, M. Kalke, M. Lassas, J. Moberg, and S. Siltanen, “Wavelet-based reconstruction for limited-angle x-ray tomography,” IEEE Transactions on Medical Imaging, vol. 25, no. 2, pp. 210–217, Feb. 2006.
  9. B. Dong, J. Li, and Z. Shen, “X-ray CT image reconstruction via wavelet frame based regularization and radon domain inpainting,” Journal of Scientific Computing, vol. 54, no. 2-3, pp. 333–349, Feb. 2013.
  10. P. Bao, H. Sun, Z. Wang, Y. Zhang, W. Xia, K. Yang, W. Chen, M. Chen, Y. Xi, S. Niu, J. Zhou, and H. Zhang, “Convolutional sparse coding for compressed sensing CT reconstruction,” IEEE Transactions on Medical Imaging, vol. 38, no. 11, pp. 2607–2619, Nov. 2019.
  11. S. Lu, B. Yang, Y. Xiao, S. Liu, M. Liu, L. Yin, and W. Zheng, “Iterative reconstruction of low-dose CT based on differential sparse,” Biomedical Signal Processing and Control, vol. 79, p. 104204, Jan. 2023.
  12. H. Gao, J. Cai, Z. Shen, and H. Zhao, “Robust principal component analysis-based four-dimensional computed tomography,” Physics in Medicine and Biology, vol. 56, no. 11, pp. 3181–3198, May 2011.
  13. O. Semerci, N. Hao, M. E. Kilmer, and E. L. Miller, “Tensor-based formulation and nuclear norm regularization for multienergy computed tomography,” IEEE Transactions on Image Processing, vol. 23, no. 4, pp. 1678–1693, Apr. 2014.
  14. B. Zhao, H. Ding, Y. Lu, G. Wang, J. Zhao, and S. Molloi, “Dual-dictionary learning-based iterative image reconstruction for spectral computed tomography application,” Physics in Medicine and Biology, vol. 57, no. 24, pp. 8217–8229, Nov. 2012.
  15. Y. Zhang, X. Mou, G. Wang, and H. Yu, “Tensor-based dictionary learning for spectral CT reconstruction,” IEEE Transactions on Medical Imaging, vol. 36, no. 1, pp. 142–154, Jan. 2017.
  16. Y. Dong, P. C. Hansen, and H. M. Kjer, “Joint CT reconstruction and segmentation with discriminative dictionary learning,” IEEE Transactions on Computational Imaging, vol. 4, no. 4, pp. 528–536, Dec. 2018.
  17. S. Li, Q. Li, R. Li, W. Wu, J. Zhao, Y. Qiang, and Y. Tian, “An adaptive self-guided wavelet convolutional neural network with compound loss for low-dose CT denoising,” Biomedical Signal Processing and Control, vol. 75, p. 103543, may 2022.
  18. H. Chen, Y. Zhang, M. K. Kalra, F. Lin, Y. Chen, P. Liao, J. Zhou, and G. Wang, “Low-dose CT with a residual encoder-decoder convolutional neural network,” IEEE Transactions on Medical Imaging, vol. 36, no. 12, pp. 2524–2535, Dec. 2017.
  19. K. H. Jin, M. T. McCann, E. Froustey, and M. Unser, “Deep convolutional neural network for inverse problems in imaging,” IEEE Transactions on Image Processing, vol. 26, no. 9, pp. 4509–4522, Sep. 2017.
  20. K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016, pp. 770–778.
  21. Z. Zhang, X. Liang, X. Dong, Y. Xie, and G. Cao, “A sparse-view CT reconstruction method based on combination of DenseNet and deconvolution,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1407–1417, Jun. 2018.
  22. G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely connected convolutional networks,” in IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Jul. 2017, pp. 2261–2269.
  23. O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convolutional networks for biomedical image segmentation,” in Medical Image Computing and Computer Assisted Intervention – MICCAI, 2015, pp. 234–241.
  24. Y. Han and J. C. Ye, “Framing U-net via deep convolutional framelets: Application to sparse-view CT,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1418–1429, Jun. 2018.
  25. Z. Huang, J. Zhang, Y. Zhang, and H. Shan, “DU-GAN: Generative adversarial networks with dual-domain u-net-based discriminators for low-dose CT denoising,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–12, 2022.
  26. D. Wang, F. Fan, Z. Wu, R. Liu, F. Wang, and H. Yu, “CTformer: convolution-free token2token dilated vision transformer for low-dose CT denoising,” Physics in Medicine and Biology, vol. 68, no. 6, p. 065012, Mar. 2023.
  27. B. Zhou, X. Chen, S. K. Zhou, J. S. Duncan, and C. Liu, “Dudodr-net: Dual-domain data consistent recurrent network for simultaneous sparse view and metal artifact reduction in computed tomography,” Medical Image Analysis, vol. 75, p. 102289, Jan. 2022.
  28. T. Cheslerean-Boghiu, F. C. Hofmann, M. Schulthei, F. Pfeiffer, D. Pfeiffer, and T. Lasser, “Wnet: A data-driven dual-domain denoising model for sparse-view computed tomography with a trainable reconstruction layer,” IEEE Transactions on Computational Imaging, vol. 9, pp. 120–132, 2023.
  29. Y. Zhang, T. Lv, R. Ge, Q. Zhao, D. Hu, L. Zhang, J. Liu, Y. Zhang, Q. Liu, W. Zhao, and Y. Chen, “CD-net: Comprehensive domain network with spectral complementary for DECT sparse-view reconstruction,” IEEE Transactions on Computational Imaging, vol. 7, pp. 436–447, Apr. 2021.
  30. W. Wu, D. Hu, C. Niu, H. Yu, V. Vardhanabhuti, and G. Wang, “DRONE: Dual-domain residual-based optimization network for sparse-view CT reconstruction,” IEEE Transactions on Medical Imaging, vol. 40, no. 11, pp. 3002–3014, Nov. 2021.
  31. H. Chen, Y. Zhang, Y. Chen, J. Zhang, W. Zhang, H. Sun, Y. Lv, P. Liao, J. Zhou, and G. Wang, “LEARN: Learned experts’ assessment-based reconstruction network for sparse-data CT,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1333–1347, Jun. 2018.
  32. J. Adler and O. Oktem, “Learned primal-dual reconstruction,” IEEE Transactions on Medical Imaging, vol. 37, no. 6, pp. 1322–1332, Jun. 2018.
  33. J. Zhang and B. Ghanem, “ISTA-Net: Interpretable optimization-inspired deep network for image compressive sensing,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).   IEEE, jun 2018, pp. 1828–1837.
  34. I. Daubechies, M. Defrise, and C. D. Mol, “An iterative thresholding algorithm for linear inverse problems with a sparsity constraint,” Communications on Pure and Applied Mathematics, vol. 57, no. 11, pp. 1413–1457, 2004.
  35. M. Elad, “Why simple shrinkage is still relevant for redundant representations?” IEEE Transactions on Information Theory, vol. 52, no. 12, pp. 5559–5569, Dec. 2006.
  36. J. Xiang, Y. Dong, and Y. Yang, “FISTA-net: Learning a fast iterative shrinkage thresholding network for inverse problems in imaging,” IEEE Transactions on Medical Imaging, vol. 40, no. 5, pp. 1329–1339, May 2021.
  37. A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM Journal on Imaging Sciences, vol. 2, no. 1, pp. 183–202, Jan. 2009.
  38. Z. Zhang, Y. Liu, J. Liu, F. Wen, and C. Zhu, “AMP-Net: Denoising-based deep unfolding for compressive image sensing,” IEEE Transactions on Image Processing, vol. 30, pp. 1487–1500, 2021.
  39. D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” in Proceedings of the National Academy of Sciences, vol. 106, no. 45, 2009, pp. 18 914–18 919.
  40. X. Fan, Y. Yang, K. Chen, Y. Feng, and J. Zhang, “Nest-DGIL: Nesterov-optimized deep geometric incremental learning for cs image reconstruction,” IEEE Transactions on Computational Imaging, vol. 9, pp. 819–833, 2023.
  41. M. Christopher, M. Ali, and B. Richard, “Learned d-amp: A principled cnn-based compressive image recovery algorithm,” in Advances in Neural Information Processing Systems, 2017.
  42. M. Borgerding, P. Schniter, and S. Rangan, “AMP-inspired deep networks for sparse linear inverse problems,” IEEE Transactions on Signal Processing, vol. 65, no. 16, pp. 4293–4308, Aug. 2017.
  43. H. K. Aggarwal, M. P. Mani, and M. Jacob, “MoDL: Model-based deep learning architecture for inverse problems,” IEEE Transactions on Medical Imaging, vol. 38, no. 2, pp. 394–405, Feb. 2019.
  44. Y. Yang, J. Sun, H. Li, and Z. Xu, “ADMM-CSNet: A deep learning approach for image compressive sensing,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 42, no. 3, pp. 521–538, Mar. 2020.
  45. H. Zhang, B. Liu, H. Yu, and B. Dong, “MetaInv-net: Meta inversion network for sparse view CT image reconstruction,” IEEE Transactions on Medical Imaging, vol. 40, no. 2, pp. 621–634, Feb. 2021.
  46. X. Fan, Y. Yang, and J. Zhang, “Deep geometric distillation network for compressive sensing MRI,” in IEEE EMBS International Conference on Biomedical and Health Informatics (BHI), 2021.
  47. W. Xia, Z. Lu, Y. Huang, Z. Shi, Y. Liu, H. Chen, Y. Chen, J. Zhou, and Y. Zhang, “MAGIC: Manifold and graph integrative convolutional network for low-dose CT reconstruction,” IEEE Transactions on Medical Imaging, vol. 40, no. 12, pp. 3459–3472, Dec. 2021.
  48. X. Fan, Y. Yang, K. Chen, J. Zhang, and K. Dong, “An interpretable MRI reconstruction network with two-grid-cycle correction and geometric prior distillation,” Biomedical Signal Processing and Control, vol. 84, p. 104821, Jul. 2023.
  49. S. F. McCormick, “Multigrid methods,” SIAM, 1987.
  50. J. Xu, “A new class of iterative methods for nonselfadjoint or indefinite problems,” SIAM Journal on Numerical Analysis, vol. 29, no. 2, pp. 303–319, Apr. 1992.
  51. J. Xu, “Two-grid discretization techniques for linear and nonlinear PDEs,” SIAM Journal on Numerical Analysis, vol. 33, no. 5, pp. 1759–1777, Oct. 1996.
  52. P. M. Anselone and J. W. Lee, “Spectral properties of integral operators with nonnegative kernels,” Linear Algebra and its Applications, vol. 9, pp. 67–87, 1974.
  53. J. Song, B. Chen, and J. Zhang, “Memory-augmented deep unfolding network for compressive sensing,” in Proceedings of the 29th ACM International Conference on Multimedia, Oct. 2021, pp. 4249–4258.
  54. K. Jiang, Z. Wang, P. Yi, J. Jiang, J. Xiao, and Y. Yao, “Deep distillation recursive network for remote sensing imagery super-resolution,” Remote Sensing, vol. 10, no. 11, p. 1700, Oct. 2018.
  55. K. He, X. Zhang, S. Ren, and J. Sun, “Delving deep into rectifiers: Surpassing human-level performance on ImageNet classification,” in IEEE International Conference on Computer Vision (ICCV), Dec. 2015, pp. 1026–1034.
  56. T. R. Moen, B. Chen, D. R. Holmes, X. Duan, Z. Yu, L. Yu, S. Leng, J. G. Fletcher, and C. H. McCollough, “Low-dose CT image and projection dataset,” Medical Physics, vol. 48, no. 2, pp. 902–911, Dec. 2020.
  57. M. Ronchetti, “Torchradon: Fast differentiable routines for computed tomography,” arXiv, 2020.
  58. K. Diederik and B. Jimmy, “Adam: A method for stochastic optimization,” in Proceedings of ICLR, 2015.
  59. A. Beck and M. Teboulle, “Fast gradient-based algorithms for constrained total variation image denoising and deblurring problems,” IEEE Transactions on Image Processing, vol. 18, no. 11, pp. 2419–2434, Nov. 2009.
  60. Z. Wang, X. Cun, J. Bao, W. Zhou, J. Liu, and H. Li, “Uformer: A general u-shaped transformer for image restoration,” in IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Jun. 2022, pp. 17 662–17 672.
  61. K. Zhang, Y. Li, W. Zuo, L. Zhang, L. Van Gool, and R. Timofte, “Plug-and-play image restoration with deep denoiser prior,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 44, no. 10, pp. 6360–6376, 2022.
User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Xiaohong Fan (8 papers)
  2. Ke Chen (241 papers)
  3. Huaming Yi (1 paper)
  4. Yin Yang (110 papers)
  5. Jianping Zhang (49 papers)

Summary

We haven't generated a summary for this paper yet.