Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 45 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 21 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Approximating quantum channels by completely positive maps with small Kraus rank (1711.00697v3)

Published 2 Nov 2017 in quant-ph, math.FA, and math.PR

Abstract: We study the problem of approximating a quantum channel by one with as few Kraus operators as possible (in the sense that, for any input state, the output states of the two channels should be close to one another). Our main result is that any quantum channel mapping states on some input Hilbert space $\mathrm{A}$ to states on some output Hilbert space $\mathrm{B}$ can be compressed into one with order $d\log d$ Kraus operators, where $d=\max(|\mathrm{A}|,|\mathrm{B}|)$, hence much less than $|\mathrm{A}||\mathrm{B}|$. In the case where the channel's outputs are all very mixed, this can be improved to order $d$. We discuss the optimality of this result as well as some consequences.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube