Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 22 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 81 tok/s Pro
Kimi K2 172 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Small Moving Window Calibration Models for Soft Sensing Processes with Limited History (1710.11595v3)

Published 31 Oct 2017 in stat.ML, cs.LG, and stat.ME

Abstract: Five simple soft sensor methodologies with two update conditions were compared on two experimentally-obtained datasets and one simulated dataset. The soft sensors investigated were moving window partial least squares regression (and a recursive variant), moving window random forest regression, the mean moving window of $y$, and a novel random forest partial least squares regression ensemble (RF-PLS), all of which can be used with small sample sizes so that they can be rapidly placed online. It was found that, on two of the datasets studied, small window sizes led to the lowest prediction errors for all of the moving window methods studied. On the majority of datasets studied, the RF-PLS calibration method offered the lowest one-step-ahead prediction errors compared to those of the other methods, and it demonstrated greater predictive stability at larger time delays than moving window PLS alone. It was found that both the random forest and RF-PLS methods most adequately modeled the datasets that did not feature purely monotonic increases in property values, but that both methods performed more poorly than moving window PLS models on one dataset with purely monotonic property values. Other data dependent findings are presented and discussed.

Citations (11)

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.